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Abstract. This work presents a study on the genetic profile of the left and right hemispheres of 
the brain of a mouse model of Parkinson's disease (PO). The goal is to characterize, in a genetic 
basis, PO as a disease that affects these two brain regions in different ways. Using the same whole
genome micro array expression data introduced by Brown et al. (2002) [1], we could find significant 
differences in the expression of some key genes, well-known to be involved in the mechanisms of 
dopamine production control and PD. The problem of selecting such genes was modeled as the 
MIN (a,/3)-FEATURE SET problem [2]; a similar approach to that employed previously to find 
biomarkers for different types of cancer using gene expression microarray data [3]. The Feature 
Selection method produced a series of genetic signatures for PO, with distinct expression profiles in 
the Parkinson's model and control mice experiments. In addition, a close examination of the genes 
composing those signatures shows that many of them belong to genetic pathways or have ontology 
annotations considered to be involved in the onset and development of PD. Such elements could 
provide new clues on which mechanisms are implicated in hemisphere differentiation in PD. 

Keywords: Data Mining; Feature Selection; Microarray Data Analysis 
PACS: 02.70.-c; 89.20.Ff 

INTRODUCTION 

Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by 
four main symptoms: resting tremors, rigidity of the limbs, slowness of movement, and 
difficulty with balance and coordination. The disease is caused by a continuous loss of 
the dopaminergic neurons in the substantia nigra of the brain. The degeneration of these 
neurons reduces the amount of dopamine produced, which interferes in the functioning 
of the basal ganglia - a region of the brain involved in the control of muscle action. 
Although the exact underlying cause of PD in not yet known, most scientists believe that 
genetics and/or environmental factors play an important role. Family history is gradually 
being perceived to be a risk factor, with an estimated 15-25% of the Parkinson's patients 
reporting having a relative with the disease. This view was initially confirmed in 1996, 
when a candidate gene for some cases of PD was mapped to chromosome 4 [4]. Since 
then, several other Parkinson's-related genes have been found. Also, a series of genetic 
pathways, in particular those related to apoptosis and neurodegeneration have also been 
implicated to PD. 

CP952, ComputationalModelsfor Life Sciences--CMLS '07, 2007 International Symposium 
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This work uses the same dataset introduced in Brown et al. (2002) [1] but goes one 
step further in terms of the analysis of results. While Brown et al. (2002) focuses in 
finding genes related to PD by comparing the brains of a PD model mouse against a 
control individual, in this work we aim at finding variations in gene expression between 
the left and right hemispheres of the mice brains. The dataset used comprises 7,035 
genes and 80 experiments, corresponding to 40 voxels from a normal and 40 voxels from 
a Parkinson's affected rodent. It is available for download directly from the author's 
website1

• The work of Brown provides extensive information on how the brain tissue 
samples were collected and how the microarray instance was generated. As these are 
not the central issues of this paper, we refer the reader directly to Brown's work. 

The main method used to identify differentially expressed genes is based on a math
ematical model for inference of gene expression patterns and NP-hard problem known 
as the MIN (a,j3)-FEATURE SET problem [3, 5]. This approach was previously used 
to identify genetic signatures for Alzheimer's disease [6], as well as for the molecu
lar classification of cancer [3, 7]. Genetic signatures obtained using this method carry 
a mathematical guarantee of inter-class differentiation and intra-class similarity, which 
lacks in other traditional approaches based solely on statistics, such as p-vaJue based se
lection. The MIN (a, J3)-FEATURE SET method is briefly described in the next section, 
but a more thorough discussion is found in reference [3). 

MODELING THE GENE SUBSET SELECTION PROBLEM 

To understand how we address the problem of finding genetic markers for the two 
hemispheres of the PD brain, we will describe the MIN (a,j3)-FS problem, which 
provides a combinatorial formalization of the problem of interest. The MIN (a, J3)-FS 
problem is a variation of the well-known k-FEATURE SET and it has been introduced 
with the aim of selecting robust feature sets of strong discriminative power and within
class similarity [5]. The problem is described as: 

• Instance: A set of m examples X= {x(1l, ... , x(ml}, such that Vi= l, ... ,m; 
iiJ = {xii) ,4i), ... ,x~) ,t(il} E {N}n+l, and three integers k > 0, and a~ 1, J3 ~ 0. 

• Question: Does there exist an (a, J3)- k-Feature SetS, S <;; { 1, · · · , n}, with lSI ~ k 
and such that: 

- for all pairs of examples i i j, if t(il i tUl there exists S'(i,j) <;; S such that 

IS' I ~ a and for all/ E S' x}il i xfil ? 

- for all pairs of examples i i j, if t(il = t(j) there exists S'(i,j) <;; S such that 

IS' I ~ J3 and for all/ E S' xjil = x}j) ? 

The problem is NP-hard as the k-FEATURE SET problem is a special case where 
(a, J3) = ( 1, 0) [8]. Furthermore, the MIN (a, J3)-F S problem is not likely to be fixed-

1 http:/!labs.pharrnacology.ucla.edulsmithlab/genome_multiplex/index.htm 
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parameter tractable for parameter k as Cotta and Moscato (2003) have proved that the 
k-FEATURE SET problem is W[2]-complete [2]. 

A fundamental distinction of the model used in this work, in relation to all previous 
applications, is that we take into account the fact that different regions of the brain are 
expected to have naturally distinct expression profiles due to normal tissue functional 
differentiation. Therefore, the aim of our approach becomes to find genes that are 
differentially expressed in the same voxel in the PD and normal brains. Under these 
circumstances, we will only work with the cases in which a): 1 and f3 = 0. Our aim is 
then to find a setS' of k features (genes) such that for any pair of samples with different 
targets (PD/normal, same voxel), there are at least a genes in S' that support (i.e. have 
distinctive expression levels) this difference in all voxels. In our tests, the parameter a 
was adjusted to return a solution with around 36 genes, which is the number of genes 
reported in Brown's work. 

The notion of distinctive expression levels is a critical issue. Some gene expression 
studies consider two expression levels as significantly distinct if there is at least a 2-fold 
difference between them. Such difference is high enough to reduce the influence of noise 
and other precision limitations in the eDNA microarray technology. Therefore, given any 
two samples, relative to the same voxel, one from the PD and the other from the normal 
brain, we only consider that a gene is discriminative for that pair if the expression levels 
for the two samples differ by at least a 2-fold ratio. 

As said before, the MIN (a,f3)-FEATURE SET Problem is NP-hard, but the use 
of a standard integer programming (IP) formulation, such as in references [3, 7], in 
conjunction with the IP solver ILog CPLEX 9.02, allows solving medium-sized instances 
to optimality in relatively short CPU times. To cite an exmple, the three optimal feature 
sets shown in Figure 2 were obtained in less than 5 minutes of CPU time each, using a 
Pentium IV 3.0 GHz computer with 1 Gb RAM. 

PARKINSON'S DISEASE MICROARRAY DATA 

The Parkinson's disease microarray data used in this work was introduced by Brown 
et al. (2002) [1]. They used a PD model created by the administration of toxic doses 
of methamphetamine to the C57BL/6J strain of mice3

• These doses cause a destruction 
of the dopaminergic nerve, which is responsible for control movement initiation and 
coordination. The brains from the control and methamphetamine-treated mice were 
divided into 40 voxels each (ten volume slices taken horizontally, each divided into four 
voxels) and then analyzed, resulting in a 7,035-gene microarray with 80 samples. 

Brown et al. (2002) reported 36 genes as differentially expressed in the brains of the 
PD and normal mice. The genes are listed in Figure 1 and will be used as benchmark for 
comparison against the ones selected using the MIN (a,/3)-FS method. 

2 http://www.ilog.com/products/cplex 
3 http://jaxmice.jax.org/info/index.html 
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Gene symbol Accession# Name 

Abca2 
Alp2a2 
Clr 
Lrpapl 
Papss2 
Pglyrp 
Psmel 
Pura 
Rdh5 
Rps5 
X66 
Hdac5 
Klfl 
Matalll 
Mxl1 
Nr2c2 
Spl 
Cdc42 
Crkas 
Mlapt/Mapl 
Pkcq 
Stk2 
Ecml 
Eln 
Lamc2 
Grb2 
Ppp2ca 
Sl00a6 
Parg 
Siahla 
Morl 
Mul 
Fxr2h 
Qk 
Aplb1 
Arf2 

AA276158 
AA222567 
AA261393 
AA253890 
AA244536 
AA238752 
AA239485 
AI894064 
AA275664 
AA240279 
AA249976 
AA017742 
W97446 
AA461637 
AA472395 
AA501045 
AA212645 
AA266975 
AA240272 
AA028410 
W98195 
AA268478 
AA237378 
AA239171 
W49392 
AA183927 
AA245165 
AA267952 
AA260570 
AA267965 
AA266087 
AA250181 
AA119248 
AA220551 
AA221073 
AA266938 

ATP-binding cassette, sub-family A (ABCI ), member 2 
ATPase, Ca2+ transporting, cardiac muscle, slow twitch 2 
Complement component I, r subcomponent 
Low-density lipoprotein receptor-related protein associated protein 1 
5' -Phosphoadenosine 5' -phosphosulfate synthase 2 
Peplidoglycan recognition protein 
Protease (prosome, macropsin) 28 subunit, alpha 
Purine-rich element-binding protein A 
Retinol dehydro~enase type 5 
Ribosomal protem S5 (translation) 
Xeroderma pigmentosum, complementation group C 
Histone deacetylase 5 (regulation of transcription) 
Erythroid Kruppel-like factor l 
Metastasis associated 1-like 1 
Ma-interacting protein 1 (antagonist of c-Myc transcription factor) 
Nuclear receptor subfamily 2, group H, member 2 
trans-Acting transcription factor 1 
Cell division cycle 42 homolog (p GTPase, cell morphology) 
v-crk associated tyrosine kinase substrate 
Microtubule-associated protein 't 
Protein kinase C, theta (neurite outgrowth) 
Serine/threonine kinase 2 (apoptosis, cytoskeletal remodeling) 
Extracellular matrix protein 1 (secretory glycoprotein) 
Elastin (extracellular matrix component) 
Laminin, y2 (extracellular matrix glycoprotein) 
Growth factor receptor bound protein 2 
Protein phosphatase 2a, catalytic subunit, a isoform 
Calcium-binding protein A6, or calcyclin 
Poly(ADP-ribose) glycohydrolase (apoptosis) 
Seven in absentia homolog IA (cell cycle arrest) 
Mitochondrial malate dehydrogenase (oxidative phosphorylation) 
Methylmalonyl-coenzyme A mutase 
Fragile X mental retardation ~ene, autosomal homolog 2 
Quaking (RNA binding protem required for myelin formation) 
Adaptor protein complex AP-1, fJI subunit 
ADP-ribosylation factor 2 (GTP-binding protein) 

FIGURE 1. List of 36 genes reported in Brown et al. (2002) as differentially expressed in Parkinson's 
disease. 

COMPUTATIONAL RESULTS 

The application of the MIN ( a,fJ)-FS method resulted in three genetic signatures for 
Parkinson's disease; one consisting of genes differentially expressed in the PD brain 
compared to the normal (Figure 2a), using all samples; a second signature considering 
only the samples from the left hemisphere of the PD and normal brains (Figure 2b); and 
the last signature considering only the right hemisphere samples (Figure 2c). 

As the biomarkers will be compared to the 36-gene signature from Brown et 
al. (2002), we adjusted the parameters of the MIN (a,/3)-FS approach to return 
optimal feature sets with the closest number of genes (probes). The parameters were 
(a,{J) = (9, 0) for the whole brain signature; (a,/3) = (10, 0) for the left hemisphere; 
and (a, f3) = (11, 0) for the right hemisphere. 
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o.Micc. Symbd 
AAOX\687 Est 
AAOZ-l261! C&acaml.o 
AA2SQ1$9 At!l 
AASSS119!.i Tt:3 
AA270371 Gsk3b 
AA269<W1 Gsk3b 
AA5217&1 Mala11 
AJ42502B war13 
W14332 PeDal 
AA1527'311 Psmdl 
W65520 ArW21 

~~~:: ~~pi 
Al390236 Tnpo2 
AA2.224S1 Alb11 
AAZ76S44 Pried 
W17647 Tlr 
W64752 N91'm 
AA2S0155 Cds2 
AA016574 A2m 
AA2'3!!417 Cars 
AA10900J Hba-a1 
Al426266 Est 
AA1854'l2 Est 
AA1752<!3 ZtJpl 
AA20000t PcnXI3 
AA472074 XCtl 
W341B7 Epllall 
AM74342 N:::aph 
AA27576t Mt:dS 
AA071829 Est 
AA209065 Apob 
AA275562 Pbm11 
AA19851<1 Est 
AA386S57 Est 
Al4Z7650 Est 
AA259573 Ubi12111 

(c) Right hemisphere- 35 probes 

~MAce. Symbol 
AA222<S1 Att:1'1 
AA276S« PI1<Cd 
W17f.ol7 Tlr 
AAZ>9417 care 
AA175243 Zbpl 
AI~2$26S E!t 
AA1S543.2 £sr 
AA0641B3 P&X16 
AAtOWOO Hba-a1 
Al427&50 £~t 
AA2000111 Pcfl)l:l3 
AA11967Q Pctkl 
Al429726 Ntrk.l 
AA161S~ Klldl 
WCSJS.i Jml(tl 
AAHlB514 Est 
AA27S562 Pbrml 
W29<132 Al111 
AA277'J~ H2.f.D1 
AA23Q47Q Haol 
AA2'3142B Prpt19 
AJ390236 Tnpo2 
AA220114 VP'52 
AA25564S £'t 
AA397020 Est 
AA023263 Ptnkl 
AA521764 MUIII 
AA20Q6S2 Nr4a 1 
AA2SQ13Q Atll 
AA003687 Est 
WW3:32 Pctxlt 
AA269ol41 Gsk3t:> 
AA27((J71 Gsk3b 
AA38El605 Tlc3 
AA53741l0 £s1 

. Symbol 

"'"' PramoW ... ,. 
Pbrmt 

'"' 0ca2~~~ 
Zl'p6111 -!'gop 
Malatt 
Go"" 
Go"" 
Go"" 
~" 
Chmp<lb 

""" "'" Glut 

'" FO)(pt 
Hspa9 

'" """' Tuba.u 
Nolm 

"' "'" Ht>a-at 

'" AA185(52 Esl 
AAI7524'3 Zbpt 
Af'323576 M"b2 
AM72074 Xdh 
AA.2tSZ79 S!lrPn&2 

FIGURE 2. Three genetic signatures obtained using the MIN (a,/3)-FS method using samples from 
the (a) whole brain; (b) left hemisphere only; (c) right hemisphere only. The parameters of the FS algo
rithm were adjusted to select the closest number of biomarkers to those reported in Brown et al. (2002) [1], 
in order to remove possible biases in the result analysis. Biological aspects of the findings are discussed 
and compared to those of reference [1 ]. 

Pathway analysis 

An analysis of the pathways most represented in each of the signatures points to 
the MIN (a,f3)-FS method is as a better biomarker selection method. The study was 
conducted using a web-based tool - the GATHER [9] from Duke University, USA. 
Next, we present the information retrieved using the pathway analysis tool and then 
we proceed to explain each of the findings. In Figure 3 we show the pathways most 
represented in the genetic signatures introduced in Brown et al. (2002) and in this work. 
Afterwards, we show current evidence of links between PD and the pathways present in 
Figure 3. Between parenthesis, we list the signatures in which the pathway is represented 
(B =Brown et al. (2002); W =MIN (a,f3)-FS- whole brain; L =MIN (a,f3)-FS-

211 

vkw237
Text Box



(a) Brown et al. (2002) 

Pathway Gene symbol(s) 

Focal adhesion Bcarl Cdc42 Grb2 Lamc2 
Tight junction Cdc42 Ppp2ca Prkcq 
Retinol metabolism Rdh5 
Sulfur metabolism Papss2 
Glyoxylate and dicarboxylate metabolism Mdh2 
Reductive carboxylate cycle (C02 fixation) Mdh2 

(b) MIN (a,/3)-FS- Whole brain 

Pathway 

Alzheimer's disease 
Hedgehog signaling 
Complement and coagulation cascades 
Purine metabolism 
Tight junction 
Insulin signaling 

Gene symbol(s) 

A2mGsk3b 
Gsk3b 
A2m 
Xdh 
Prkcd 
Gsk3b 

(c) MIN ( a,/3)-FS- Left hemisphere 

Pathway 

Glyoxylate and dicarboxylate metabolism 
Parkinson's disease 
Alzheimer's disease 
MAPK signaling 
Hedgehog signaling 

Gene symbol(s) 

Haol 
Pinkl 
Gsk3b 
Nr4a1 Ntrk1 
Gsk3b 

(d) MIN (a,/3)-FS- Right hemisphere 

Pathway 

Peptidoglycan biosynthesis 
Nitrogen metabolism 
Glutamate metabolism 
Alzheimer's disease 
Hedgehog signaling 
Purine metabolism 
Insulin signaling 

Gene symbol(s) 

Glul 
Glul 
Glul 
Gsk3b 
Gsk3b 
Xdh 
Gsk3b 

p-value 

0.004 
0.004 
0.005 
O.Dl 
0.01 
0.01 

p-value 

<0.0001 
0.006 
0.009 
O.Dl 
0.01 
O.Dl 

p-value 

0.002 
0.004 
0.006 
0.01 
0.01 

p-value 

0.0002 
0.002 
0.002 
0.003 
0.006 
0.01 
0.01 

FIGURE 3. Pathways most represented in (a) the work of Brown et al. (2002) and (b-e-d) in the three 
genetic signatures depicted in Figure 2, respectively. The tables yield information on the pathway name; 
which biomarkers are present in the signature; and the statistical relevance of such finding, in terms of 
number of hits in relation to the size of the pathway - given by the p-value. Only pathways with p
value <::; 0.01 are reported. It is noteworthy the high number of metabolism pathways and also the presence 
of Parkinson's and Alzheimer's disease pathways in the MIN ( a,/3)- FS signatures. 

left hemisphere; R =MIN ( a,J3)-FS- right hemisphere). 

• Alzheimer's disease (W, L, R) - It is widely accepted that neurodegenerative dis
eases in general have common characteristics. Recent studies further confirm that 
both Alzheimer's and Parkinson's diseases share similar genetic mechanisms that 
lead to alterations in physiological properties of the brain [ 10, 11]. 

• Complement and coagulation cascades (W) - No connection reported. 
• Focal adhesion (B)- No connection reported. 
• Glutamate metabolism (R) - The degeneration of dopaminergic neurons in the 

brain of PD patients has been linked to a malfunction of the complex interaction 

212 

between dopaminerg 
glutamate-induced to 

• Glyoxylate and dicar 
• Hedgehog signaling 

developmental proce; 
including neuronal s 
study for mesodience 
importance of Fgf8 G 
development of such , 

• Insulin signaling (W, 
son's disease due the 
in the substantia nigrc 
endothelial cells are s1 
tosis. Activation of in: 
cellular reduction-oxi1 

• MAPK signaling (L)
by a study of a mutati' 
MAPK signaling cas1 
Parkinson's disease [1 

• Nitrogen metabolism ( 
tive stress response me 

• Parkinson's disease (l 
(pten-induced kinase 1 

• Peptidoglycan biosynt} 
• Purine metabolism (YJ 

metabolism through ac 
Recent studies have es1 
in PD and suggest ader 

• Reductive carboxylate 
• Retinol metabolism (J 

(RA) [23], and recently 
and regeneration in the 
as PD [24]. 

• Sulfur metabolism (B) 
is a common hallmark 
disturbed [25]. Xenobic 
to neurotoxicity and ap' 

• Tight junction (B, W) -
change the integrity oft 
their relation to brain d1 

From the 16 pathways ci 
eration or Parkinson's disea 
diseases pathways in the ge1 



p-value 

,2 Lamc2 0.004 
kcq 0.004 

0.005 
0.01 
0.01 
0.01 
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0.009 
0.01 
O.Ql 
0.01 
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0.01 
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f the complex interaction 

between dopaminergic and metabotropic glutamate receptors (mGluRs) [12], or to 
glutamate-induced toxicity [ 13]. 

• Glyoxylate and dicarboxylate metabolism (B, L) - No connection reported. 
• Hedgefwg signaling (W, L, R) - The Hedgehog pathway has a role in several 

developmental processes and in the maintenance of adult organs and cell types, 
including neuronal subtypes [14]. This was recently confirmed by a stem cell 
study for mesodiencephalic dopaminergic neuron replacement that confirmed the 
importance of Fgf8 (fibroblast growth factor 8) and Shh (sonic hedgehog) for the 
development of such cells [15]. 

• Insulin signaling (W, R) - The insulin signaling pathway has been linked to Parkin
son's disease due the concentration of Igfl (insulin-like growth factor 1) receptors 
in the substantia nigra region [ 16]. Also, a recent study has shown that human brain 
endothelial cells are specially vulnerable to hyperglycemic stress, resulting in apop
tosis. Activation of insulin signaling thus protects the cell integrity by maintaining 
cellular reduction-oxidation balance [17]. 

• MAPK signaling (L)- This pathway has been directly involved in PD development 
by a study of a mutation in gene Lrrk2 (leucine-rich repeat kinase 2), which alters 
MAPK signaling cascades and triggers apoptosis, causing autosomal dominant 
Parkinson's disease [18]. 

• Nitrogen metabolism (R) - Nitrogen metabolism is linked to PD by the toxic oxida
tive stress response mechanism, which triggers dopaminergic neuron death [19, 20]. 

• Parkinson's disease (L)- The Parkinson's disease pathway is represented by Pink1 
(pten-induced kinase 1), whose mutations cause autosomal recessive PD [21]. 

• Peptidoglycan biosynthesis (R) -No connection reported. 
• Purine metabolism (W, R) - Purine metabolism is closely connected to dopamine 

metabolism through adenosine, an endogenous purine nucleoside that regulates it. 
Recent studies have established adenosine receptor-dopamine receptor interactions 
in PD and suggest adenosine as a target for PD therapy [22]. 

• Reductive carboxylate cycle (B) -No connection reported. 
• Retinol metabolism (B) - Retinol metabolism is regulated by retinoic acid 

(RA) [23], and recently RA was found to be involved in the regulation of plasticity 
and regeneration in the adult brain, possibly playing a role in motor disorders such 
as PD [24]. 

• Sulfur metabolism (B) - Defects in sulphoxidation and sulphation of xenobiotics 
is a common hallmark of PD, indicating that endogenous sulphur metabolism is 
disturbed [25]. Xenobiotics effects on mitochondrial function have also been linked 
to neurotoxicity and apoptosis [26]. 

• Tight junction (B, W) - Alterations in tight junction and in the blood-brain barrier 
change the integrity of the cell membrane and permeability. Several studies describe 
their relation to brain degeneration and PD [10, 27]. 

From the 16 pathways cited in Figure 3, 11 of them can be linked to neurodegen
eration or Parkinson's disease. Also, the appearance of Parkinson's and Alzheimer's 
diseases pathways in the genetic signatures introduced in this work is worth mention-
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PROTEIN BINDING RESULTS 

BROWN ET AL. (2002) 
CSPG4 (chondroitin sulfate proteoglycan 4) 
RAPGEFl (Rap guanine nucl. exchange factor) 
VAVl (vav 1 oncogene) 
E2F2 (E2F transcription factor 2) 
WASF2 (WAS protein family, member 2) 
WASFl (WAS protein family, member 1) 
WASL (Wiskott-Aldrich syndrome-like) 
CD2AP (CD2-associated protein) 
TNK2 (tyrosine kinase, non-receptor, 2) 
ANXA2 (annexin A2) 
HNRPC (heter. nuclear ribonucleoprotein C) 
RTN4 (reticulon 4) 
BCL6 (B-cell CLUlymphoma 6) 
SlOOB (SlOO calcium binding protein, f3 (neural) 
PTPNl (tyr. phosphatase, non-receptor type 1) 

WHOLE BRAIN 

PAEP (progestagen-associated endometrial protein) 
APOE (apolipoprotein E) 
MUCl (mucin 1, transmembrane) 
HSPAS (heat shock 70kDa protein 5) 
SMAP (small acidic protein) 
LOC220869 (dopamine responsive protein) 
FRAT2 (freq. rearranged adv. T-celllymphomas 2) 
MTP (microsomal triglyceride transfer protein) 
SNAil (snail homolog 1) 
BTNlAl (butyrophilin, subfamily 1, member Al) 
ERP70 (protein disulfide isomerase related protein) 
LRP2 (low density lipoprotein-related protein 2) 
FRATl (freq. rearranged adv. T-celllymphomas) 
SGKL (serum/glucocorticoid regulated kinase-like) 
LCAT (lecithin-cholesterol acyltransferase) 
LIPC (lipase, hepatic) 
RIPK4 (receptor-interac. serine-threonine kinase 4) 
RBP4 (retinol binding protein 4, plasma) 
ADAMTSl (a disintegrin-like and metalloprotease) 

LEFT HEMISPHERE 
MUCl (mucin 1, transmembrane) 
YWHAG (tyrosine 3-monooxygenase/tryptophan) 
PTPNl (tyr. phosphatase, non-receptor type 1) 
FRAT2 (freq. rearranged adv. T-celllymphomas 2) 
RUSCl (RUN and SH3 domain containing 1) 
RPS6KA6 (ribosomal protein S6 kinase, 90kDa) 
SNAil (snail homolog 1) 
FRATl (freq. rearranged adv. T-celllymphomas) 
SGKL (serum/glucocorticoid regulated kinase-like) 
KLRC3 (killer cell lectin-like receptor) 
RIPK4 (receptor-interac. serine-threonine kinase 4) 
RBP4 (retinol binding protein 4, plasma) 

RIGHT HEMISPHERE 

BRD8 (bromodomain containing 8) 
THRAP4 (thyroid horm. receptor assoc. prot. 4) 
NCOA4 (nuclear receptor coactivator 4) 
RNF8 (ring finger protein 8 
ERBP (estrogen receptor binding protein) 
PPARGC1A (peroxisome proliferative activ. recep.) 
NROB2 (nuclear rec. subfam. 0, group B, member 2) 
EDF1 (endothelial differentiation-related factor 1) 
GADD45G (growth arrest and DNA damage) 
PPARBP (PPAR binding protein) 
NCOA2 (nuclear receptor coactivator 2) 
NRIP1 (nuclear receptor interacting protein 1) 
FU22494 (hypothetical protein FU22494) 
LOC220869 (dopamine responsive protein) 
FRAT2 (freq. rearranged adv. T-celllymphomas 2) 
RARG (retinoic acid receptor, gamma) 
SNAil (snail homolog 1) 
BTN1A1 (butyrophilin, subfamily 1, member A1) 
FRATl (freq. rearranged adv. T-celllymphomas) 
FABP1 (fatty acid binding protein 1, liver) 
JMJDlC (jumonji domain containing 1C) 
SGKL (serum/glucocorticoid regulated kinase-like) 
NR4A2 (nuclear rec. subfam. 4, group A, member 2) 
RBP4 (retinol binding protein 4, plasma) 
TMPRSS3 (transmembrane protease, serine 3) 
NFKB 1 (nuclear factor of kappa light polypeptide) 
NCOAl (nuclear receptor coactivator 1) 

FIGURE 4. List of protein binding candidates (protein-protein interaction) for all the biomarkers in 
each of the four signatures (with p-values < 0.01). The list wa~ generated using the database GATHER, 
and among the most common ontologies for these proteins, we must cite cell motility, regulation of 
neurogenesis, actin polymerization, lipid metabolism, regulation of axon extension and regulation of 
neuronal synaptic plasticity. 

ing, as Brown's biomarkers missed both. In terms of relevant biomarkers, we must give 
special emphasis to Pinkl (pten-induced kinase 1), found in the left hemisphere sig
nature and that is a well-known PD gene that protects the neuron from mitochondrial 
oxidative stress [21]. Also worth mentioning is gene Gsk3b (glycogen synthase kinase 
3 beta), present in the Alzheimer's pathway. Polymorphisms in Gsk3b were found to 
alter transcription and splicing and interact with tao-haplotypes to modify disease risk 
in Parkinson's [28]. 
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Gene ontology analysis and protein-protein interaction 

In this section we investigate the ontology annotations of the biomarkers present in 
the signatures and of the proteins most likely to bind with them. Using the biomarkers 
in each of the signatures - the one from Brown et al. (2002) and the three in Figure 2 -
we determined the most common ontologies. Interestingly, there is a general absence 
of brain-related annotations; the majority is metabolism-related (protein, glycogen, sul
phates, hormone, among others). With this result, we went one step further and using 
the GATHER protein binding database, we obtained the list of proteins most likely (p
value < 0.01) to bind with the genes in the four signatures (see Figure 4). 

For the biomarkers in Brown et al. (2002), the majority of the binding proteins have 
brain-related ontology annotations such as regulation of neurogenesis, actin polymeriza
tion, regulation of axon extension and regulation of neuronal synaptic plasticity, whereas 
very few metabolism annotations are present. For the MIN ( a,/3)-FS signatures, in ad
dition to brain-related ontologies, several other categories of interest are present. For in
stance, in the signature for the whole brain, metabolism (protein and lipid) and oxidative 
response ontologies are also present. For the left and right hemispheres, however, brain
related ontologies are almost non-existent, but there are plenty of metabolism (protein 
and phosphate), transcription and oxidative response annotations. 

From these results, we can conclude that when looking at the whole brain at once, 
the proteins that better differentiate PD and normal brains are indeed related to brain 
functions, such as synapsis and neurogenesis. For the right and left hemispheres how
ever, differentiation occurs via other mechanisms, related to metabolism, transcription 
and oxidative response. Supporting this conclusion, a recent study has put some light on 
asymmetries in PD, stating that metabolism and oxidative response variations between 
the two hemispheres of the brain could affect differently the dopaminergic neurons in the 
substantia nigra, resulting in asymmetric clinical effects [29]. However, the authors do 
not find an appropriate explanation for side preference in terms of symptoms and argue 
that the mechanisms behind side differentiation are still too complex to understand. 

CONCLUSION 

In this paper, we present three sets of biomarkers for Parkinson's disease (PD) using 
eDNA microarray data extracted from two C57BL/6J strain rodents. The first signature 
was obtained comparing the samples of the whole brain of the PD-affected against a 
control mouse. The second and third used the samples extracted from the left and right 
hemispheres of the brains, respectively. The problem of finding the signatures was mod
eled as a MIN (a,/3)-FEATURE SELECTION problem. A pathway analysis conducted 
on the three signatures and on the biomarkers reported in Brown et al. (2002) indicate 
that the MIN (a,/3)-FS approach retrieves biomarkers belonging to pathways more 
relevant to PD, including the Parkinson's and the Alzheimer's diseases pathways. Also, 
we made a study on the ontology of the biomarkers and of their most relevant binding 
proteins. The analysis shows that the biomarkers have mostly metabolism-related on
tologies, whereas their binding proteins show more variation, with the presence not only 
of brain-related, but also metabolism, transcription and oxidative response ontologies. 
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